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Spontaneous emergence of rudimentary
music detectors in deep neural networks

Gwangsu Kim 1, Dong-Kyum Kim 1 & Hawoong Jeong 1,2

Music exists in almost every society, has universal acoustic features, and is
processed by distinct neural circuits in humans even with no experience of
musical training. However, it remains unclear how these innate characteristics
emerge and what functions they serve. Here, using an artificial deep neural
network that models the auditory information processing of the brain, we
show that units tuned to music can spontaneously emerge by learning natural
sound detection, even without learning music. The music-selective units
encoded the temporal structure of music in multiple timescales, following the
population-level response characteristics observed in the brain.We found that
the process of generalization is critical for the emergence of music-selectivity
and that music-selectivity can work as a functional basis for the generalization
of natural sound, thereby elucidating its origin. These findings suggest that
evolutionary adaptation to process natural sounds can provide an initial
blueprint for our sense of music.

Music is a cultural universal of all human beings, having common
elements found worldwide1,2, but it is unclear how such universality
arises. As theperception andproductionofmusic stem from the ability
of our brain to process the information about musical elements3–7, the
universality question is closely related to how neural circuits for pro-
cessing music develop, and how universals arise during the develop-
mental process regardless of the diversification of neural circuits
derived by the spectacular variety of sensory inputs from different
cultures and societies.

In our brain, music is processed by music-selective neural popu-
lations in distinct regions of the non-primary auditory cortex; these
neurons respond selectively to music and not speech or other envir-
onmental sounds6,8,9. Several experimental observations suggest that
music-selectivity and an ability to process the basic features of music
develop spontaneously, without special need for an explicit musical
training10. For example, a recent neuroimaging study showed that
music-selective neural populations exist in not only individuals who
had explicit musical training but also in individuals who had almost no
explicit musical training11. In addition, it was reported that even infants
have an ability to perceivemultiple acoustic features of music12,13, such
as melody that is invariant to shifts in pitch level and tempo, similar to
adults. One intuitive explanation is that passive exposure to life-long

music may initialize the music-selective neural populations11, as hear-
ing occurs even during pre-natal periods14. However, the basic
machinery of music processing, such as harmonicity-based sound
segregation, has been observed not only in Westerners but also in
native Amazonians who had limited exposure to concurrent pitches in
music15. These findings raise speculations on whether exposure to
music is necessary for the development of an early form of music-
selectivity, although subsequent experience-dependent plasticity
could further refine the circuits.

Recent modeling studies using artificial deep neural networks
(DNNs) have provided insights into the principles underlying the
development of the sensory functions in the brain16–19. In particular, it
was suggested that a brain-like functional encoding of sensory inputs
can arise as a by-product of optimization to process natural stimuli in
DNNs. For example, responses of DNN models trained for classifying
natural images were able to replicate visual cortical responses and
could be exploited to control the response of real neurons beyond the
naturally-occurring level20–22. Even high-level cognitive functions have
been observed in networks trained to classify natural images, namely
the Gestalt closure effect23 and the ability to estimate the number of
visual items in a visual scene24,25. Furthermore, a DNN trained for clas-
sifyingmusic genres andwordswas shown to replicate human auditory
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cortical responses26, implying that such task-optimization provides a
plausible means for modeling the functions of the auditory cortex.

Here, we investigate a scenario inwhichmusic-selectivity can arise
as a by-product of adaptation to natural sound processing in neural
circuits27–30, such that the statistical patterns of natural sounds may
constrain the innate basis ofmusic in our brain. We show that in a DNN
trained for natural sound detection, music is distinctly represented
even when music is not included in the training data. We found that
such distinction arises from the response of the music-selective units
in the feature extraction layer. The music-selective units are sensitive
to the temporal structure of music, as observed in the music-selective
neural populations in the brain. Further investigation suggests that
music-selectivity can work as a functional basis for the generalization
of natural sound, revealing how it can emerge without learning music.
All together, these results support the possibility that evolutionary
pressure to process natural sound contributed to the emergence of a
universal template of music.

Results
Distinct representation ofmusic in a network trained for natural
sound detection including music
We initially tested whether a distinct representation of music can arise
in a DNN trained for detecting natural sounds (including music) using
the AudioSet dataset31. Previous work suggested that a DNN trained to
classifymusic genres andword categories can explain the responses of
the music-selective neural populations in the brain26. Thus, it was
expected that DNNs can learn general features of music to distinguish
them from diverse natural sound categories.

The dataset we used consists of 10 s real-world audio excerpts
from YouTube videos that have been human-labeled with 527 cate-
gories of natural sounds (Fig. 1a, 17,902 training data and 17,585 test
datawithbalancednumbers for eachcategory to avoidoverfitting for a
specific class). Thedesignof thenetworkmodel (Fig. 1b andTable S1) is
based on conventional convolutional neural networks32, which have
been employed to successfully model both audio event detection33

and information processing of the human auditory cortex26. The net-
work was trained to detect all audio categories in each 10 s excerpt
(e.g., music, speech, dog barking, etc.). As a result, the network
achieved reasonableperformance in audio event detection as shown in
Fig. S1a. After training, 17,585 test data was presented to the network
and the responses of the units in the average pooling layer were used
as feature vectors representing the data.

By analyzing the feature vectors of music and non-music data,
we show that the network trained with music has a unique repre-
sentation for music, distinct from other sounds. We used
t-distributed stochastic neighbor embedding (t-SNE) to visualize the
256-dimensional feature vectors in two dimensions, which ensures
that data close in the original dimensions remain close in two
dimensions34. The resulting t-SNE embedding shows that the dis-
tribution of music data is clustered in a distinct territory of the
embedding space, clearly separated from non-music data (Fig. S1b).
Such a result is expected; as music was included in the training data,
the network can learn the features of music that distinguish music
from other categories. Given this, one might expect that such a dis-
tinct representation of music would not appear if music were dis-
carded from the training dataset.
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Fig. 1 | Distinct representation of music in deep neural networks trained for
natural sound detection without music. a Example log-Mel spectrograms of the
natural sound data in the AudioSet31. b Architecture of the deep neural network
used to detect the natural sound categories in the input data. The purple box
indicates the average pooling layer. c Performance (mean average precision, mAP)

of the network trained without music for music-related categories (top, red bars)
and other categories (bottom, blue). n = 5 independent networks. Error bars
represent mean +/− SD. d Density plot of the t-SNE embedding of feature vectors
obtained from the network in C. The lines represent iso-proportion lines at 80%,
60%, 40%, and 20% levels. Source data are provided as a Source Data file.
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Distinct representation of music in a network trained
without music
However, further investigation showed that the distinct representation
formusic can still arise in a DNN trainedwithoutmusic. To test this, we
discarded the data that contain any music-related categories from the
training dataset and trained the network to detect other audio events
except the music-related categories. As a result, the network was not
able to detect music-related categories, but still achieved reasonable
performance in other audio event detection (Fig. 1c). Interestingly
though, the distribution ofmusicwas still clustered in a distinct regime
of the t-SNE embedding space, despite the network not being trained
with music (Fig. 1d and Fig. S2). This suggests a scenario in which
training with music is not necessary for the distinct representation of
music by the DNN.

Such observation raises a question on how such distinct repre-
sentations emerge without training music. Based on previous
notions27–30, we speculated that features important for processing
music can spontaneously emerge as a by-product of learning natural
sound processing in DNNs. To rule out other possibilities first, we
tested two alternative scenarios: (1) music and non-music can be
separated in the representation space of the log-Mel spectrogram
using linear features, so that a nonlinear feature extraction process is
not required, and (2) units in the network selectively respond to the
trained categories but not to unseen categories, so that the distinct
representation emerges without any music-related features in the
network.

We first found that the distinct representation did not appear
when conventional linear models were used. To test this, feature vec-
tors were obtained from data in the log-Mel spectrogram space by
applying two conventional models for linear feature extraction: prin-
cipal component analysis (PCA, Fig. S3a) and a spectro-temporal two-
dimensional-Gabor filter bank (GBFB) model of auditory cortical
response35,36 (Fig. S3c, Methods). Next, we applied the t-SNE embed-
ding method to the obtained vectors, as in Fig. 1d, and analyzed the
distribution. Visual inspection suggested that the resulting embedding
generated by the PCA and GBFB methods did not show a clear
separation between music and non-music (Fig. S3b, d).

To further validate this tendency while avoiding any distortion
of data distribution that might arise from the dimension reduction
process, we fitted a linear regression model to classify music and
non-music in the training dataset by using their feature vectors as
predictors and tested the classification performance using the test
dataset (Fig. S4a). As a result, the network trained with natural
sounds yielded significantly higher accuracy (mAP of the network
trained without music: 0.887 ± 0.005, chance level: 0.266) than PCA
or GBFB (one-tailed, one-sample Wilcoxon signed-rank test, PCA:
mAP =0.437, U statistic (U) = 15, p = 0.031, common language effect
size (ES) = 1; GBFB: mAP = 0.828, U = 15, p = 0.031, ES = 1, n = 5 inde-
pendent networks). Moreover, the classification accuracy was almost
unchanged even when the linear features were used together with
the features from the network (Net + PCA: mAP = 0.887 ± 0.004,
Net + GBFB: mAP = 0.894 ± 0.004).

Next, we tested whether the distinct representation is due to the
specificity of the unit response to the trained categories37,38. It is pos-
sible that all features learned by the network are specifically fitted to
the trained sound categories, so that the sounds of the trained cate-
gories would elicit a reliable response from the units while the sounds
of unseen categories (including music) would not. To test this, we
checked whether the average response of the units to music is sig-
nificantly smaller than the non-music stimuli. Interestingly, the average
response to music was stronger than the average response to non-
music (Fig. 2a, one-tailed Wilcoxon rank-sum test, U = 30,340,954,
p = 4.891 × 10−276, ES = 0.689, nmusic = 3999, nnon-music = 11,010). This
suggests that features optimized to detect natural sound can also be
rich repertoires ofmusic; i.e., the networkmayhave learned featuresof

music throughout the training process even though music was com-
pletely absent in the training data.

Music-selective units in the deep neural network
Based on the above results, we investigated whether units in the net-
work exhibit music-selective responses. We used two criteria to test
this: (1) whether some units show a significantly stronger response to
music than other sounds, and (2) whether those units encode the
temporal structure of music in multiple timescales.

First, we found that some units in the network respond selectively
to music rather than other sounds. To evaluate this, we define and
quantify the music-selectivity index (MSI) of each network unit as the
difference between the average response to music and non-music in
the test dataset normalized by their unpooled variance39 (i.e., t-statis-
tics, Methods). Next, using the train dataset that is independent from
the test dataset used to identify MSI, we found that units with the top
12.5% MSI values have an average 2.07 times stronger response to
music than toother sounds (Fig. 2b). Thus, these unitswereconsidered
as putative music-selective units. We found that the same conclusion
can be obtained even when the root mean square (RMS) amplitude of
all sound inputs was normalized equally, or when the RMS amplitude
of music categories was significantly smaller than non-music cate-
gories (Fig. 2c, Methods). This suggests that the current results are
robust to changes in low-level sound properties such as amplitude.We
found that the responseof thesemusic-selective units canbeexploited
for the replication of the basic music classification behavior (Fig. 2d,
accuracy: AP: 0.832 ±0.007) using a linear classifier, for all 25 music
genres included in the dataset (Fig. S6). In contrast, using other units
with intermediate MSI values showed significantly lower performance,
suggesting that the music-selective units provide useful information
for processing music.

A previous study showed that the fMRI voxel responses to diverse
natural sounds (165 natural sounds) can be decomposed into 6 major
components and one of these components exhibits a music-selective
response profile6 (Fig. 3a). Based on this result, we further examined
our model by analyzing the response of music-selective units to the
same sound stimuli that were used in the previous human fMRI
experiment.

We found that themusic-selective network units in the networks
trained without music have a higher response to music sounds
compared to other non-music sounds in the 165 natural sounds
dataset (Fig. 3b, the responses to individual sounds are sorted in
descending order). We also noted that this tendency is similarly
observed in the networks trainedwithmusic, but not in the randomly
initialized networks or the Gabor filter bank model (Fig. 3c). To fur-
ther validate this tendency, we compared the average response of
music-selective units in the networks trained without music to each
of the 11 sound categories of the 165 natural sounds dataset. As
shown in Fig. 3d, the music-selective units consistently showed
higher responses to the music categories (both instrumental and
vocal) compared to all the other non-music sound categories. This
shows that the current model works robustly even on a completely
new dataset. Nonetheless, compared to that of the brain, the music-
selective units in the network showed a relatively high response to
non-music sounds (Fig. 3b inset), which is expected as the network
had no refinement process to distinguish music directly. Thus, fur-
ther refinement of music-selectivity into a more ‘music-exclusive
form’ could be expected throughout one’s music-specific experience
(at least via a simple linear combination of the existing sub-features)
to achieve selectivity at the mature human level.

Comparing the degree of music-selectivity in different models
further supported the significance of themusic-selectivity emerging in
the network trained without music. Figure 3e shows the average
response ratio ofmusic-selective units tomusic and non-music sounds
in the training data of AudioSet in different models. The networks
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trained withoutmusic and the networks trainedwithmusic showed no
statistically significant difference in the degree of music-selectivity
(two-tailed Wilcoxon rank-sum test, U = 11, p =0.417, ES = 0.440), and
this was significantly greater than that observed in randomly initialized
networks or Gabor filter models (one-tailed Wilcoxon rank-sum test,
U = 25, p = 0.006, ES = 1). We also found that a similar tendency
appears when the networks are tested with the 165 natural sounds
dataset (music/non-music ratio, trained without music: 1.88 ± 0.13,
trained with music: 1.61 ± 0.16, randomly initialized: 1.03 ±0.0044,
Gabor: 0.95); the networks trained without music showed a higher
degree of music-selectivity than the other models (one-tailed Wil-
coxon rank-sum test, networks trained with music: U = 22, p =0.030,
ES = 0.880, randomly initialized networks: U = 25, p = 0.006, ES = 1,
Gabor filter models: U = 25, p = 0.006, ES = 1). Nonetheless, in the case
of testing with the 165 natural sounds dataset, the response of the
networks trained with the AudioSet could be biased due to the short
length of each sound excerpt and relatively small data space (e.g., the
165 natural sounds dataset contains a total of 2 s x 35 music sounds =
70 s of music data).

Second, we found that the music-selective units in the network
showed sensitivity to the temporal structure of music, replicating
previously observed characteristics of tuned neural populations in
the human auditory cortex6,40,41. While music is known to have dis-
tinct features in both long and short timescales6,41, it is possible that
the putative music-selective units only encode specific features of

music in a specific (especially short) timescale. To test this, we
adopted the ‘sound quilting’method41 (Fig. 4a, Methods): the original
sound sources were divided into small segments (50–1600ms in
octave range) and then reordered while considering smooth con-
nections between segments. We note that the stimuli used for the
generation of the sound quilt (sounds in the training dataset) are
independent of the dataset used to identify music-selective units (the
test dataset). This shuffling method preserves the acoustic proper-
ties of the original sound on a short timescale but destroys it on a
long timescale. It has been shown that the response of music-
selective neural populations in the human auditory cortex is reduced
when the segment size is small (e.g., 30ms) so that the temporal
structure of the original sound is broken6. Similarly, after recording
the response of the music-selective units to such sound quilts of
music, we found that their response is correlated with the segment
size (music quilt: Pearson’s r = 0.601, p = 4.447 × 10−4). The response
to the original soundwas not statistically significantly higher than the
response to 800ms segment inputs, but it was higher than the
response to 50ms segment inputs (Fig. 4b, original: 0.768 ± 0.030;
800ms: 0.775 ± 0.033; 50ms: 0.599 ± 0.047; one-tailed Wilcoxon
signed-rank test, 800ms: U = 0, p = 1.000, ES = 0, 50ms: U = 15,
p = 0.031, ES = 1). In addition, this tendency was consistently
observed in sound quilts of various genres (Fig. S7), suggesting that
the network units are encoding common features of various music
styles.
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To test whether or not the effect is due to the quilting process
itself, we provided quilts of music to the other non-music-selective
units. In this condition, we found that the average response remains
constant even when the segment size changes (Fig. 4c). Furthermore,
when quilted natural sound inputs were provided, the correlation
between the response of the music-selective units and the segment
length was weaker than when quilted music inputs were provided
(Fig. 4b, non-music quilt: Pearson’s r = 0.38, p =0.036), even though
the significant correlation was observed for both types of inputs.
Notably, all these characteristics of the network trained without music
replicate those observed in the human brain6,41.

Further analysis showed that the linear features of GBFBmethods
do not show the properties observed in the DNN model. The filters
with the top 12.5%MSI values showed a 1.12 times stronger response to
music than to other sounds in the training dataset on average (Fig. 3e
and Fig. S4b), which is far lower than that of the network units. Fur-
thermore, the response profile of those top 12.5% spectro-temporal
filters to soundquilts (Fig. S4c, sameanalysis as in Fig. 4b) did not show
the patterns observed for the MS units in the network, implying that
those features do not encode the temporal structure of music. Simi-
larly, our analysis showed that the units in the random network do not
show those properties observed in the network trained without music

(Fig. S5). These results further suggest that the conventional spectro-
temporal filter or features in randomly-initialized network cannot
explain the results that the units in the network encode the features
of music.

Music-selectivity as a generalization of natural sounds
Then howdoesmusic-selectivity emerge in a network trained to detect
natural sounds even without training music? In the following analysis,
we found that music-selectivity can be a critical component to achieve
generalization of natural sound in the network, and thus training to
detect natural sound spontaneously generates music-selectivity.

Clues were found from the observation that as the task perfor-
manceof thenetwork increases over the courseof training, thedistinct
representation of music and non-music becomes clearer in the t-SNE
space (Fig. S8). Based on this intuition, we hypothesized that music-
selectivity can act as a functional basis for the generalization of natural
sound, so that the emergence of music-selectivity may directly stem
from the ability to process natural sounds. To test this, we investigated
whether music-selectivity emerges when the network cannot gen-
eralize natural sounds (Fig. 5a). To hinder the generalization, the labels
of the training data were randomized to remove any systematic asso-
ciation between the sound sources and their labels, following a
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previous work42. Even in this case, the network achieved high training
accuracy (training AP >0.95) by memorizing all the randomized labels
in the training data, but showed a test accuracy at the chance level as
expected.

We found that the process of generalization is indeed critical for
the emergence of music-selectivity in the network. For the network
trained to memorize the randomized labels, the distributions of
music and non-music were clustered to some degree in the t-SNE
embedding space (Fig. S9). However, more importantly, units in the
network trained to memorize did not encode the temporal structure
of music. To test this, we analyzed the response of the units with the
top 12.5%MSI values in the network trained tomemorize using sound
quilts of music as in Fig. 4b.We found that even if the segment size of
the sound quilt changed, the response of the units remained mostly
constant, unlike the music-selective units in the network trained to
generalize natural sounds (Fig. 5b). This supports our hypothesis that
music-selectivity is based on the process of generalization of natural
sounds.

To further investigate the functional association, we performed
an ablation test (Fig. 5c), in which the response of the music-selective
units is silenced and then the sound event detection performance of
the network is evaluated. If the music-selective units provide critical
information for the generalization of natural sound, removing their
inputs would reduce the performance of the network. Indeed, we
found that ablation of the music-selective units significantly deterio-
rates the performance of the network (Fig. 5c, MSI top 12.5% vs Base-
line: U = 1,560,865, p = 3.027 × 10−211, ES = 0.917, one-tailed Wilcoxon
signed-rank test). This effect was weaker when the same number of
units with intermediate/bottom MSI values were silenced. Further-
more, the performancedropwas even greater than that of ablating the
units showing strong responses to inputs on average (MSI top 12.5%-
L1norm top 12.5%: U = 1,223,566, p = 9.740 × 10−60, ES = 0.719, one-
tailed Wilcoxon signed-rank test). This suggests that music and other
natural sounds share key features, and thus music-selective units can

playa functionally important role not only inmusic processing but also
in natural sound detection.

Finally, we investigated the role of speech in the development of
music-selectivity by removing speech sounds from the training data-
set. We found that music-selectivity can emerge even without training
speech, but speech can play an important role for units to encode the
temporal structure ofmusic in long time scales. To investigate the role
of speech, data with music-related labels or speech-related labels (all
labels under the speech hierarchy) were removed from the training
dataset. Then, we trained the network with this dataset and compared
the main analysis results with those of the network trained with-
out music.

We found that even if speech data was removed from the training
dataset, distinct clustering of music and non-music was still observed
in the t-SNE embedding space (Fig. S10a). Likewise, some units in the
network still exhibited music-selectivity, showing 1.77 times stronger
response to music than non-music on average (Fig. S10b). However,
further analysis using sound quilts showed that the response of music-
selective units in the network trained without speech shows less sen-
sitivity to the size of the segment compared to that of the network
trained with speech (Fig. S10c). This suggests that training with speech
helps the network units to acquire long-range temporal features
of music.

Nevertheless, the learned features did not contain much infor-
mation about speech, unlike music. First, our t-SNE analysis showed
that some weak degree of clustering of speech can still emerge in the
t-SNE space without training speech (Fig. S11a). Next, we checked
whether the average response of the units to speech is significantly
higher than the non-music stimuli. Therewasno statistically significant
evidence that the average response to speech sounds is stronger than
that to non-speech sounds (Fig. S11b). Furthermore, we evaluated the
speech-selectivity index (SSI) of each network unit as the difference
between the average response to speech and non-speech in
the test dataset normalized by their unpooled variance (Fig. S11c,
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the order of the alphabets represents the segment reordering process. b Response
of the music-selective units to sound quilts made of music (red) and non-music
(blue). One-tailedWilcoxon signed-rank test was used to test whether the response
was reduced compared to the original condition. For the music quilts: U50 = 15,
U100 = 15, U200 = 15, U400 = 8, U800 =0, U1,600 = 1, p50 =0.031, p100 = 0.031,
p200 =0.031, p400 = 0.500, p800 = 1.000, p1,600 = 0.969, ES50 = 1.0, ES100 = 1.0,
ES200 = 1.0, ES400 = 0.533, ES800 = 0, ES1,600 = 0.067; for the non-music quilts:
U50 = 15, U100 = 15, U200 = 15, U400 =0, U800 = 0, U1,600 = 0, p50 =0.031, p100 = 0.031,
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mean +/− SD. cResponse of the other units to sound quiltsmade ofmusic (red) and
non-music (blue). One-tailed Wilcoxon signed-rank test. For the music quilts:
U50 = 2, U100 = 3, U200 = 9, U400 = 7, U800 = 2, U1,600 = 9, p50 = 0.938, p100 = 0.906,
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ES200 = 0.333, ES400 = 0.067, ES800 = 0.067, ES1,600 = 0.267; n = 5 independent net-
works. Error bars represent mean +/- SD. The asterisks indicate statistical sig-
nificance (p <0.05). N.S.: non-significant. Source data are provided as a Source
Data file.
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similar to MSI). The units with the top 12.5% SSI values showed a 1.31
times stronger response to speech than other sounds in the training
dataset on average,which is far lower than thatof usingmusic (Fig. 2b).
Furthermore, the response profile of putative speech-selective units
(top 12.5% SSI values) to sound quilts of speech did not show the
patterns observed forMS units, implying that the network units do not
encode the temporal structure of speech41 (Fig. S11d). We also tested

the encoding for other sound categories including vehicle, animal, and
water sounds (categories with the top 3 data numbers in the training
dataset, except music and speech) using the network trained without
music, but we found that the properties observed for the other sound
categories are less significant than that in music (Fig. S12).

Discussion
Here, we put forward the notion that neural circuits for processing the
basic elements ofmusic can develop spontaneously as a by-product of
adaptation for natural sound processing.

Our model provides a simple explanation about why a DNN
trained to classify musical genres replicated the response character-
istics of the human auditory cortex26, although it is unlikely that the
human auditory system itself has been optimized to process music.
This is because training with music would result in learning general
features for natural sound processing, as music and natural sound
processing share a common functional basis. This explanation is also
valid for the observation that the auditory perceptual grouping cue of
humans can be predicted from statistical regularities of music
corpora30.

The existence of a basic ability to perceive music in multiple non-
human species is also explained by the model. Our analysis showed
that music-selectivity lies on the continuum of learning natural sound
processing. If the mechanism also works in the brain, such ability
would appear in a variety of species adapted to natural sound pro-
cessing, but to varying degrees. Consistent with this idea, the proces-
sing of basic elements of music has been observed in multiple non-
human species: octave generalization in rhesusmonkeys43, the relative
pitch perception of two-tone sequences in ferrets44, and a pitch per-
ception of marmoset monkeys similar to that of humans45. Neuro-
physiological observations that neurons in the primate auditory cortex
selectively respond to pitch46 or harmonicity47 were also reported,
further supporting the notion. A further question is whether phylo-
genetic lineage would reflect the ability to process the basic elements
ofmusic, as ourmodel predicts thatmusic-selectivity is correlatedwith
the ability to process natural sounds. However, it should be noted that
there may be differences between the distribution of the modern
sound data used for training (e.g., vehicle, mechanical sounds) and the
sound data driving evolutionary pressure. Furthermore, some studies
reported a lack of functional organization in different species for
processing harmonic tones (in macaques48) or music (in ferrets49),
suggesting that higher-order demands for processingmusic could play
an important role in the development of the mature music-selective
functional organizations found in humans.

The scope of the current model is limited to how the innate
machinery ofmusic processing can arise initially, anddoes not account
for complete experience-dependent development of musicality. The
results here do not preclude the possibility that further experience-
dependent plasticity could significantly refine our ability to process
music (including the music-selectivity), and indeed, several studies
supporting this notion have been reported48,49. The current results do
not conflict with this notion; future studies that include experience-
dependent development would be able to clarify the role of each
process.

The current CNN-based model is not a model that fully reflects or
mimics the structure or mechanism of the brain. For example, as our
CNN models are based on a feedforward connectivity structure, the
intracortical connections or top-down connections that exist in the
brain cannot be reflected in the models. Furthermore, although the
learning of the DNN models is governed by the backpropagation of
errors, it is at least unclear how the brain may compute errors with
respect to a specific computational objective and how the network
assigns credits to the tremendous number of synaptic weights16.
Nonetheless, despite these discrepancies, previous works have
reported that there is a hierarchical correspondence between the
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layers of task-optimized CNNs and regions of the auditory cortex26.
Our results thus support the notion that optimizing for a specific
computational goal can drive different systems to converge to have a
similar representation for processing natural stimuli21, suggesting the
possible scenario that the development of music-selectivity in the
brain may have been guided by a similar computational goal.

Recent studies suggest that music has a common element found
worldwide, but there is a considerable variation in musical styles
among distinct societies covering multiple geographical regions1,2.
One interesting but unanswered question is what might create these
commonalities or differences in music from various societies.
According to the current model, the basic perceptual elements to
process music are shaped by the statistics of the auditory environ-
ment. Therefore, commonalities in music may have emerged from a
common element of the auditory environment, and distinct musical
styles may have been affected by the difference in the statistics of the
auditory environment (plausibly due to geographical/historical dis-
tinction). For example, as speech sounds are common and rich sources
in the auditory environment regardless of geographical distinction,
speech may have played a key role in the development of common
features ofmusic. Indeed, our analysis showed that information on the
temporal structure of music in a long time scale can be reduced when
speech sounds are removed from the training dataset. We expect that
future studies would reveal the relationship between distinct auditory
environments and musical styles.

Our results also provide insights into the workings of audio pro-
cessing inDNNs.Recentworks showed that the class selectivity ofDNN
units is a poor predictor of the importance of the units and can even
impair generalization performance50,51, possibly because it can induce
overfitting to a specific class. On the other hand, we found that music-
selective units are important for the natural sound detection task, and
a good predictor of DNN performance. One possible explanation is
that the music-selective units have universal features for the general-
ization of other natural sounds rather than specific features for specific
classes, and thus removing them hinders the performance of the DNN.
Thus, these results also support the notion that the general features of
natural sounds learned by DNNs are key features that make up music.

In summary, we demonstrated that music-selectivity can sponta-
neously arise in a DNN trained with real-world natural sounds without
music, and that themusic-selectivity provides a functional basis for the
generalization of natural sound processing. By replicating the key
characteristics of the music-selective neural populations in the brain,
our results encourage the possibility that a similar mechanism could
occur in the biological brain, as suggested for visual22–24 and
navigational52 functions using task-optimized DNNs. Our findings
support the notion that ecological adaptation may initiate various
functional tunings in the brain, providing insight into how the uni-
versality of music and other innate cognitive functions arises.

Methods
All simulations were done in Python using the PyTorch and TorchAu-
dio framework.

Neural network model
Our simulations were performed with conventional convolutional
neural networks for audio processing. At the input layer, the original
sound waveform (sampling rate = 22,050Hz) was transformed into a
log-Mel spectrogram (64 mel-filter banks in the frequency range of
0Hz to 8000Hz, window length: 25ms, hop length: 12.5ms). Next,
four convolutional layers followed by a batch-normalization layer and
a max-pooling layer (with ReLU activation and a dropout rate of 0.2)
extracted the features of the input data. The global average pooling
layer calculated the average activation of each feature map of the final
convolutional layer. These feature values were passed to two succes-
sive fully connected layers, and then a sigmoid functionwas applied to

generate the final output of the network. The detailed hyperpara-
meters are given in Table S1.

Stimulus dataset
The dataset we used is the AudioSet dataset31, a collection of
human-labeled (multi-label) 10 s clips taken from YouTube
videos. We used a balanced dataset (17,902 training data and
17,585 test data from distinct videos) consisting of 527 hier-
archically organized audio event categories (e.g., ‘classical music’
under ‘music’). Music-related categories were defined as all clas-
ses under the music hierarchy, and some classes under the human
voice hierarchy (‘Singing’, ‘Humming’, ‘Yodeling’, ‘Chant’, ‘Male
singing’, ‘Female singing’, ‘Child singing’, ‘Synthetic singing’, and
‘Rapping’). To completely remove music from the training data-
set, we independently validated the presence of music in the
other data in the balanced training dataset and found that about
4.5% (N = 507) of the data contains music without a music-related
label. Some typical errors were as follows: (1) the music is too
short or cut off, (2) the volume of music is lower than other
sounds, (3) simple errors of the human-labeler. The names of the
excluded erroneous files are documented on our GitHub
repository.

Each excerpt in the dataset is intrinsically multi-labeled as differ-
ent sounds generally co-occur in a natural environment, but a suffi-
cient number of data was selected to contain only music-related
categories (3999 in the training set and 4539 in the test set) and no
music-related categories (11,010 in the training set and 10,483 in the
test set). To test for the distinct representation ofmusic, the data were
reclassified into music, non-music, and mixed sound, and then mixed
sounds were excluded in the analysis of music-selectivity. This was
required because some data that contained music-related categories
can also contain other audio categories (e.g., music + barking).

The 165 natural sound dataset and the component response
profile data in Fig. 3a was obtained from the following publicly avail-
able repository provided by the authors: https://github.com/
snormanhaignere/natsound165-neuron2015. The data consists of 11
diverse natural sound categories: ‘Music (instrumental)’, ‘Music
(vocal)’, ‘English speech’, ‘Foreign speech’, ‘Human vocal’, ‘Animal
vocal’, ‘Human non-vocal’, ‘Animal non-vocal’, ‘Nature, Mechanical’,
and ‘Environmental’. The data was resampled to match the sampling
rate of the original dataset (22,050Hz), and the RMS (root mean
square) amplitude of each sound was normalized to the average RMS
amplitude of the data previously used for network training (AudioSet).
Then the response of themusic-selective units to the 165 sound inputs
was recorded.

Network training
We trained the network to detect all sound categories in each 10 s clip
(multi-label detection task). To that aim, the loss function of the net-
work was chosen as the binary cross-entropy between the target (y)
and the output (x), which is defined as

l = � y � log x + 1� yð Þ � log 1� xð Þ� � ð1Þ

for each category. For optimizing this loss function, we employed the
AdamW optimizer with weight decay =0.0153. Each network was
trained for 100 epochs (200 epochs for the randomized labels) with a
batch size of 32 and the One Cycle learning rate (LR) method54. The
One Cycle LR is an LR scheduling method for faster training and pre-
venting the network from overfitting during the training process. This
method linearly anneals the LR from the initial LR 4× 10�5 to the
maximum LR 0.001 for 30 epochs and then from the maximum LR to
the minimum LR 4× 10�9 for the remaining epochs. For every training
condition, simulations were run for five different random seeds of the
network. The network parameters used in the analysis were
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determined from the epoch that achieved the highest average preci-
sion over the training epochs with 10% of the training data used as a
validation set.

The previously reported audio event detection performance of a
CNN trained with the balanced training dataset is mAP =0.22133 (12
convolutional layers, no data augmentation) and ours ismAP =0.152 (4
convolutional layers).We considered this as a reasonable difference as
the current CNNmodel has a smaller number of parameters compared
to the baseline model (80,753,615 vs 1,278,191), and we did not focus
on performance optimization.

Analysis of the responses of the network units
The responses of the network units in the average pooling layer were
analyzed as feature vectors (256 dimensions) representing the data.
Following a previous experimental study39, the music-selectivity index
of each unit was defined as

MSI =
mmusic �mnon�musicffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

smusic
2

nmusic
+ snon�music

2

nnon�music

q ð2Þ

where m is the average response of a unit to music and non-music
stimulus, s is the standard deviation, and n is the number of each
type of data. The units (features) with the top 12.5% MSI values
were identified in the same way even in the case of randomly
initialized networks or the conventional filter bank model. The MSI
of the memorization network were calculated by using the data
with the correct labels (not the shuffled label that was used to train
the memorization network) in the same way as other networks.
Likewise, the response of the units with the top 12.5% MSI in the
memorization network was analyzed for the sound quilt analysis
in Fig. 5b.

To quantify the degree of music-selectivity in different networks
and with different datasets, we calculated the average ratio of the
response of music-selective units to music and non-music (as the MSI
value is dependent on the number of input data).

Testing invariance of the music-selectivity to changes in sound
amplitude
In Fig. 2c, we further tested the robustness of the music-selectivity to
changes in sound amplitude. To control the amplitude of sounds, we
first obtained the average root mean square (RMS) amplitude of the
entire training data and then normalized all individual test data to have
an RMS amplitude equal to this value. Even when we normalize the
sound amplitude, the music-selective units in the network (previously
identified with the original data) showed a stronger response to music
than other non-music sounds at almost the same degree (training
dataset: 1.97 times, test dataset: 1.95 times). To further test this
robustness, we gradually reduced the amplitude of the music sounds
(so that the RMS amplitude of music was smaller than that of non-
music, power ratio: 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64, RMS amplitude
ratio: square root of the power ratio). As can be seen in the figure, even
when the power ratio between music and non-music is 1:64 (i.e., RMS
amplitude ratio: 1:8), the network shows a significantly stronger
response to music than non-music (training dataset: 1.70 times, test
dataset: 1.68 times).

Extraction of linear features using conventional approaches
The linear features of the log-Mel spectrogram of the natural sound
data were extracted by using principal component analysis (PCA) and
the spectro-temporal two-dimensional-Gaborfilter bank (GBFB)model
following previous works35,36. In the PCA case, feature vectors were
obtained from the top 256 principal components (total explained
variance: 0.965). In the case of the GBFB model, a set of Gabor filters
were designed to detect specific spectro-temporal modulation

patterns, which are defined as

g k,nð Þ= swk
k � k0

� � � swn
n� n0

� ��h νk
2wk

k � k0

� ��h νn
2wn

n� n0

� �
ð3Þ

hb xð Þ= 0:5� 0:5 cos 2πx
b

� � � b
2 < x < b

2

0 otherwise

(
ð4Þ

sw xð Þ= expðiwxÞ ð5Þ

where k and n represent the channel and time variables (center: k0 and
n0), wk is the spectral modulation frequency, wn is the temporal
modulation frequency, and ν is the number of semi-cycles under the
envelope. The distribution of the modulation frequencies was
designed to limit the correlation between filters as follows,

wx
i+ 1 =wx

i 1 +
c
2

1� c
2

, c=dx
8
νx

ð6Þ

Here,weuseddk=0.1,dn=0.045, νk= νn=3.5,withwk, max=wn, max=π/4,
resulting in 15 spectral modulation frequencies, 18 temporal modulation
frequencies, and 263 independent Gabor filters (15 × 18–7). Next, a log-
Mel spectrogram was convolved with each Gabor filter and then
averaged after applying ReLU nonlinearity to generate the 263-
dimensional feature vector representing the data. Nonetheless, our
investigation showed that the specific choice of the parameters does not
change the results significantly.

Generation of sound quilts
Sound quilts were created according to the algorithm proposed in a
previous work41. The balanced training dataset (Fig. 4) was used as the
quilting sourcematerial. First, the original sound sources were divided
into small segments of equal size (50–1600ms in octave range). Next,
these segments were reordered while minimizing the difference
between the segment-to-segment change in log-Mel spectrogram of
the original sound and that of the shuffled sound. We concatenated
these segments while minimizing the boundary artifacts by matching
the relative phase between segments at the junction41. The quilts were
cut to 8 s and zero padding was applied to the remaining 2 s to ensure
that there was no difference in length of the sound content between
the sound quilts.

Ablation test
In the ablation test, music-related categories were excluded from the
performance measure. The units in the network were grouped based
on MSI value: top 12.5% units (MS units, N = 16), middle 43.75–56.25%
units, and bottom 12.5% units. In addition, we grouped the units that
showed a strong average response to the test data (top 12.5% L1 norm).
The response of the units in each group was set to zero to investigate
their contribution to natural sound processing.

Statistical analysis
All statistical variables, including the sample sizes, exact P values, and
statistical methods, are indicated in the corresponding texts or figure
legends. The common language effect size was calculated as the
probability that a value sampled fromone distribution is greater than a
value sampled from the other distribution. No statistical method was
used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The AudioSet dataset is available at https://research.google.com/
audioset/31. The human fMRI data6 used in Fig. 3 are available at https://
github.com/snormanhaignere/natsound165-neuron2015. Source data
are provided with this paper.

Code availability
Thepython codes used in thisworkare available at https://zenodo.org/
doi/10.5281/zenodo.1008160955.
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